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AN APPROACH TO THE PROBLEM OF STABILIZING 
SYSTEMS WITH DELAY? 
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The problem of stabilizing linear steady systems with delay when they are acted upon by various types of linear feedback is 
considered. Particular attention is given to the stabilization of second-order systems with feedback in the form of difference 
controllers. When the construction of a difference controller is complicated, a linear integral feedback is proposed for solving 
the problem. Unlike Uae well-known ~ i - O s i p o v  method of constructing integral feedback by solving a linear-quadratic 
problem, the proposed method is based on the Wiener-Paley theorem for exponential-type integral functions. Cop~ght  © 1996 
Elsevier Science Ltd. 

The problem of stabilizing dynamic systems with delay was considered for the first time by Krasovskii 
and Osipov [1, 2]. To solve it they introduced integral-type linear feedback, to construct which they used 
a method based on Lyapunov-Krasovskii functionals and a Shimanov bilinear form [3]. However, to 
use this method in practice it is ne~ssary to find eigenvalues and eigenfunctions of the system, which 
is itself a special serious problem. It is therefore of interest to consider linear feedback in the form of 
difference controllers [4--6], which are much easier to realize in practice than integral-type controllers. 

Below, using the example of two-dimensional systems, we present constructive algorithms for designing 
difference-type controllers, based on the sufficient conditions for stabilization, and which do not require 
a knowledge of the characteristic values. We consider a "scale" of feedback-type controllers and a new 
method (based on the Wiener-Paley theorem from the theory of integral functions of finite degree) 
for constructing an integral controller. It is assumed implicitly that the phase space of the systems 
considered with aftereffect is C[-h, 0]. From the point of view of the "scale" of the feedback controllers, 
the specific form of the phase space is not important (when considering the state space of a system 
with aftereffect, :more accurately, the space of "minimum" states, this question is undoubtedly impor- 
tant). Hence, in this paper we did not put any particular emphasis on the speeitic form of the phase 
space. 

We begin the investigations with a simpler controller, and, in the ease when there is no stabilizing 
controller in this class or ff its construction is complicated, we consider linear feedback that is next in 
complexity until we obtain an appropriate stabilizing controller (or we establish that the system cannot 
be stabilized). It is shown that in the well-known Krasovskii-Osipov example [1], in addition to the 
proposed integral-type controller, one can also construct a difference-type controller. 

1. FORMS OF LINEAR FEEDBACK FOR SYSTEMS 
WITH A F T E R E F F E C T  

Consider a s3n;tem with a delaying argument 

:c(t) = Ax(t) + Azx(t- h) + bu(t), t > 0 (I.I) 

x(t) e R n, u(t)¢ R, t>0; be R ~ 

whel'eA andAl are matrices of appropriate dimensions and h > 0 is a constant delay. 
In the problem of stabilizing such a system, integral feedback has been considered [1] in the form 

0 
u(t) = J [dQ(s )]x ( t+s) ,  t > 0 (1.2) 

-h 
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where Q(s) is a 1 x n matrix function, the components of which are functions of limited variation in 
the range I--h, 0]. 

To solve the modal-control problem the more general feedback 

0 
u(t)= I [dQ(s)]x(t+s), t > 0  (1.3) 

- 0  

was considered in [7], where 0 ~> h is to be determined. When the Stieltjes measure in (1.3) is discrete 
and concentrated at the points -jh (j = 0 , . . . ,  ?¢), we obtain linear feedback in the form of a difference 
controller 

N 
u(t)= Y~ q ;x ( t - jh ) ,  q j ~ R ,  j=O, l  ..... N (1.4) 

i f 0  

(N is a natural number, and the prime indicates transposition). The controller (1.4) is more convenient 
to construct in practice. In this connection, the special case 

u(t) = q~x(t) + q~x(t - h) (1.5) 

of controller (1.4) is of particular interest, since it does not take the closed system outside the limits of 
the class considered. 

Controllers of the type (1.4) have been considered for systems with delay when investigating the 
problem of stabiliTation independently of the delay [6, 8]. The sufficient condition for such stabilization 
was effectively examined in [8], but it is somewhat restrictive. This condition was then refined in [6], 
but it was expressed in implicit form. 

We note the controller [9] 

N N 
~, p j u ( t - j h ) =  ~. q~x( t - jh )  (1.6) 

j=O j=O 

and its extension 

o o 
- I dP( s ) u ( t+s )= -  I dQ(s)x(t+s) 

-0  -0 

which may be useful for solving different problems of qualitative control theory in systems with 
aftereffect. 

The approach to the stabilization problem proposed below can be extended to the system 

x(t) = Ax(t) + Amx(t - h) + DJc(t - h) + bu(t) 

with a neutral type of delaying argument when acted upon by linear feedback of the form 

u(t) = q~x(t) + q~x(t - h) + q~Yt(t - h) 

The use of different types of controllers may also be observed from [10-12]. 

2. FORMULATION OF THE PROBLEM AND FUNDAMENTAL RESULTS 

System (1.1)-(1.3) is called a modally controlled system, if for any real numbers r# (i = 1 . . . .  , n; j  = 
0 . . . .  , i) there is a non-negative number 0 and a matrix function Q(.) of limited variation in the interval 
[-0, 0] such that the characteristic equation of system (1.1), closed by controller (1.3), has the form 

[ 70 ] det ) d - A - e - ~ A i - b  eXSdQ(s) . ~ n  + ~. ~. rij~n-ie-~h=o. ~,.EC (2.1) 
i=1 j=O 

(C is the field of complex numbers and I is the n x n identity matrix). 
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System (1.1), (1..3) is assumed to be stabilized if a controller of the form (1.3) exists for which the 
roots of  the characteristic equation of the closed system have negative real parts. 

We can similarly formulate the problem of modal control and stabilization for controllers (1.2) and 
(1.4)--(1.6). 

The closed system (1.1), (1.6) is a neutral-type system. 
We know [13] that system (1.1), (1.2) is stabilized if and only if the condition 

rankM(k) = rank[M - A - e-X~Al, b ] = n (2.2) 

is satisfied for any complex numbers L, Re ~. I> 0. The condition rank M(k) = n, ~ ~ C, is necessary 
and sufficient [7] for the modal controllability of system (1.1), (1.3). 

Similarly [5], the condition 

detW(m) = det[b, (A + mA0b ..... (A + mAt) n-I ~ const ;e 0, m ~ R (2.3) 

is the criterion c.f modal controllability of system (1.1), (1.4). It is clear that condition (2_3) is 
sufficient to solve the problem of stabilizing system (1.1), (1.4). In more general form:t  if the roots 
of the equation det W(m) = 0 lie outside the circle I m I ~< 1, system (1.1), (1.6) can be stabilized. 
Condition (2.3) is necessary for the modal control of system (1.1) by controller (1.5), but, as the example 
shows 

0 1 ! 0 a:10 0It  :10 0X °,ll 
(~2_ 1 = 0 is the characteristic equation of the closed system), is not sufficient. The sufficient conditions 
are derived below for the problem of stabilizing second-order systems. 

3. S T A B I L I Z A T I O N  O F  L I N E A R  T W O - D I M E N S I O N A L  S Y S T E M S  
W I T H  D E L A Y I N G  A R G U M E N T  

Consider system (1.1) with n = 2 

A=l alla21 a22a12 I, Al=l a~la~ I at 2a~2 I, b=l b~ b~ +b~ ~O (3.1) 

and controller (1.5). We will write the feedback (1.5) in operator form 

u(t)=II31(e-Ph), ~2(e-Ph)]x(t) 
~i(e-Ph)=~iO +~il e-ph , i = i , 2  

~ i i eR ,  i=1,2,  j=0 ,1 ;  [1310,1320]=q~, [ ~ I I , I ] 21  ] = q~ 

(3.2) 

e -t'h is the delay operator and e-~x(t) = x(t - h), p = d/dt. 
Since condition (2.2) is necessary to stabilize system (1.1), (3.1), we will assume it is satisfied. 
We put A = det[b, Ab], A1 = det[b, Alb]. 
There are two possibilities: (1) AI = 0, (2) A1 ;e 0. 
We will consider case 1. The condition A1 = 0 means that b is an eigenvector of the matrixA1, i.e. 

A lb = ct~2b ( 0~2 ~ R). If b is also an eigenvector of the matrix A, i.e. Ab = ctz2b (o~22 e R), the 
transformation x = Ty, T = [d, b] with arbitrary vector d, such that det T ;e 0, reduces system (1.1) to 
the form 

$KIRILLOVA E M. and MARCHENKO V. M., Functional transformations and certain canonical forms in linear systems 
with delaying argumznts. Preprint No. 7(39), Inst. Mat. Akad. Nauk BSSR, Minsk, 1978. 
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° I !°I ° ! l°l y(t)  + y( t  - h) + u(t) (3.3) 
a21 a22 a l l  a / 2  ! 

1 1 where cx11, ¢x21, ¢xn, o~22 are certain real numbers. 
Requirement (2.2) then reduces to the condition 

~, -- a l l  -- a l l le - -~  :~: 0 (3.4) 

for all complex numbers Z, Re ~. ~> 0. 
We will need for the following lemma below. 

/.mnma [14, pp. 146-147]. Suppose c~ and [3 are real numbers. Then the roots of the question 

X + a + ~e -~ = 0 (3.5) 

have only negative real parts if and only if the point (~  ~) belongs to the stability domain t'l, the boundary 
of which is described by the lines (Fig. 1) 

~ a + ~ c o s h g = O ,  O<g< h (L) (3.6) 
[$= -a ,  [ g - ~ s i n h g = O ,  

Moreover, if the point (a, 13) lies in the domain f~l (Fig. 2), the assertion of the lemma holds for all 
h > O .  

Assert/on 1. Condition (3.4) is sufficient for system (1.1) to be made stable with controller (1.5). 

Proof. Suppose Slo, s20, Sll, $21 are real numbers such that the equation 

~. - s20 - sxt e - ~  = 0 0.7) 

has no roots with non-negative real parts, for example, s20 < 0, s21 = 0. Then the characteristic equation 
of system (1.1), closed by the controller 

I 
u(t) = [-0t21 + Slo,-a22 + s20 ]y(t) + [-¢Xll + s t I, -a22 + 521 ] y ( t  - -  ]1) (3.8) 

has the form (~ - oql - aile-~h)()~ - s~  - s2xe -~h) = 0 and, thus, has no roots in the left half-plane. 
Hence, system (3_3) and, consequently, (1.1) also, in this case can be stabilized by controller (1.5). 

,o 

- i  o 

A 
L 

vis. 1. Fig. 2. 
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We therefore hav,: the following theorem. 

Theorem 1. When A ~ 0, At = 0, system (1.1) can be stabilized by controller (1.5) when and only 
when the point (--cht, -ceil) from (3.3) ties in the domain t'L System (1.1) can be stabilized for all delays 
h • 0 when and only when the point (--Chl, --all) ties in the domain ill. 

Theorem 1 fol lo~ from Assertion 1, if we take into account the lemma and the necessary condition 
for stabilizability. 

Note 1. As follows from the proof of Assertion 1, a stabilizing controller can be chosen in the form (3.8), where 
the numbers all and o;~1 are the eisenvalum of the matricesA andAb respectively, which ~ to eigenvectors 
of these matrioes different from b. 

Suppose further that A1 = 0, A ;~ 0. Carrying out the transformation x .-- ~ ,  where T = lAb - (all 
+ a22)b, b], we can reduce system (1.1) to the form 

I 0 1 ~ t ) + i  et]l 0 ~ I 0 lu(t) (3.9) 
y(t)=-r20 -1"21 a l  I ¢Xl2 2 (t-h)+ I 

(rl0, r20, ¢x~I, ¢z121, ¢z~2 are certain real numbers). Assuming 

. ( t )  = [r2o, r~oly(t)- [¢x~,a h ]y(t - h) +v (l) 

we obtain 

(3.10) 

,(o-i o  1 o.1 o. (3.11) 

Closing system (1.1) with the feedback 

d v(t)=[~l(e-~). ¢I2(e-~)]y(t), p=-~ 

11i ( e - I~  ) = l l i o  + Tlile. - I ~  , "qo E R, i=1,2, j=O,! 

we arrive at the following characteristic quasi-polynomial 

(3.12) 

' I: - 1"ll(e -;~ ) ~.- l12(e -;~ ) 

= ~2 _ X(gX lle-~ + I]2 (e -;~)) + al ie-~¢12 (e -~)- I]i (e -~)def~ 

of the closed system. 
Suppose ~ eg 13 are arbitrary real numbers such that Z0 > 0,(oc, [~) ¢ fl (for example, ec > I 0C~l D. 

Then the equation (~. + g0)(~. + cc + ~- '~) = 0 has no roots with negative real part. We wfll now require 
that 

For this it is sufficient to put 

whence it follow,,; that 
~l,e-%12(e -~)-n1(e-~) = Xo(~+~-~) 
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111(e-~) = -~.o(a +~e-~h)-alue-~(a + k o +f,e -~ +a~e -~) 

I] 2 ( e -~ ) = - a  - ~'0 - ~ e-)~ - 0{I I e-~ 

Suppose further that 13 + 0{11 = 0. Then 

111(e-~)=-ou%0-0{llff.e -~, 112(e-~)=-0{-;t,.0 (3.13) 

Hence, by (3.10), (3.12) and (3.13) the required controller can be chosen in the form 

u(t)  = [r20 - oh3.0, rl0 - 0{ - ~ '0  ] y ( t )  - [ 0 {~ ,  + 0 {0{ I1 .0{~2  ]y( t  - h) ( 3 . 1 4 )  

Note that, by virtue of the lemma when a > l a~l I, controller (3.14) guarantees a stable closed system 
for allh > 0. 

Theorem 2. If A ~ 0, A1 = 0, system (1.1), (3.1) can be stabilized by feedback (1.5) for any delay h, 
h > 0. Then the stabilizing controller is defined by relation (3.14), taking the inverse transformation y 
= Tqx into account. 

Consider case 2:A1 ;~ 0. Using the transformationx = ~ ,  T = [Alb + rnb,  b] we obtain 

) ( t ) = i ° q l  0{121y(t)+! 0 1 i l°lu(,) (3.15) 
0{21 "0{22 -r22 -rtl y ( t - h ) +  1 

where r11 and r22 are defined in (2.1). Assuming that 

U(t) = [--0{21, --0{22 ]y(t) + [r22, r l I ]y(t - h) +. (t) (3.16) 

and choosing v(t) in the same 
polynomial 

way as (3.12), we arrive at the following characteristic quasi- 

I _£-kh I det ;L -0{it -0{12 = 
- 111(e - ~  ) )i.- 112 (e -kh ) 

= k2 + k(-0{l I - I]2 (e-a)) + 0{I 012 (e-~) - 111 ( e-~)(0{12 + e-~) = • 
clef 

of the closed system. When 0{11 < 0, the system can be stabilized by feedback (3.12), (3.16) when 
111(e -P~) = 0 and by an appropriate choice of 112(e"~). We require that 

i~ il (~L+0{ I +131e-)~)(~.+ 0{2 + [3e-)~) m 

sl k 2 + k(0{ I + 0{2 + (131 + l}2) e-~ ) + (0{I + l}I e-z~ )(0{2 + [32 e-~ ). ~' -= C 

where (0{1, 131) ~ f~, ((1,2, ~ )  ~ £2. Hence 

112 =-0{11-0{i-0{2 -(~}1 +[}2) e -~  (3.17) 

111 = - a l l ( a l l  +,(/'1 +e~ +(I}1 +1}~ )e-~) + -(al  + i~-;~)(e~ +1~ e-~) ~, E C 
0{12 +£-MI 0{12 + e-kh 

Since the expression 111(e -~) must be quasi-polynomial, we require that 

--all(all 4"0{ I "4"0{ 2 --(I}l +l}2)0{12)--(al--0{12[}1 X0{2 -0{12[}2) = 0 (3.18) 

Bearing in mind the fact that (al ,  ~31) ~ f2, (a2, []2) ~ £2 we conclude that all < 1/h when a12 = 0. 
In this case the stabilizing controller can be chosen in the form 
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u(t) = [-or2, - Oq I~l - Otll~2 - Ot|f]2 - Ot2~|, - Otrz - Ot, I - ~i - Ot2 ]y(t) + 

+[r22 - I]d]2, ql - ~1 - ~21y(t - h) 

(3.19) 

Consider the case when ~12 ;e 0. From (3.18) we obtain 1~1 = ( a l l  + ~l) /{X12 • 
Taking into account the fact that (oq, [~1) • fl, (ct2, ~2) • fl, we have 

g cos hg 
Ct I -- 

s i n  hg (3.20) 

gcoshg < oql +oq g h 
sinhg cq2 < sinhg'  O < g < ~ ,  (ot2,~]2)~fl 

Since sin hg > 0 when 0 < g < ~/h, inequality (3.20) can be represented in the equivalent form 

oq2>O ~ Otl2<O 

-¢Xt2g < gcoshg - or ~-al2gcoshg < geoshg - 
1 

41 
[-¢xtl sin hg < -czt2g cos hg I - a l l  sin hg < -¢x t2g 

/ 

(3.21) 

We fixg, 0 < g < ff/(2h). We then obtain from (3.21) 

t 
,:zt2 > ¢zll sinhg / g - coshg 

,:xt2 < cxtt tghg  I g - 1 

'~12 > 0 

o r  t 
oil2 < ctlj sin hg / g - coshg 

¢xl2 >Cttl t g h g l  g - I  

cq2 < 0 

(Fig. 3). 
I fg  ---> ~/(2h), it follows from (3.21) that (ctn ~ 0) cq2 > 2hctn/~, till > 0 (Fig. 4). 
We now fixg, ~/(2h) < g < 5/h. From (3.21) we have (ctn ~ 0) 

!'oq2 > ¢tll sinhg i g -  coshg 

oq2 >or H tghg / g -  1 

[~12 > 0 

o r  [ °r,t'~ < tilt sin hg / g - cos hg 

oq2 <oq~ t g h g / g - I  

¢tl2 < 0 

(Fig. 5). 
For the point (0, -1)  criterion (2.2) is not satisfied, and hence when tZll = 0 and ix12 = -1  the system 

is not stabilizable. 
Analysing the cll.ange in the parameter g from 0 to ~/h (Figs 3-5), we obtain the domain f~2 in which 

system (1.1), (3.15) can be stabilized by controller (1.5) (Fig. 6). This is an open domain, bounded by 
the straight lines o:12 = 1, 0~12 = - -1 ,  0~12 ----- O~llh - I. 

Hence we have the following theorem. 

Theorem 3. Sup[rose A1 ;~ 0. Then system (1.1), (3.15 ) can be stabilized by controller (1.5) if the point 
(otn, cq2) lies in the domain fl 2. 

When oq2 # 0, ctn/> 0 a stabilizing controller can be chosen in a form similar to (3.19) (with rn and 

r22 replaced by all, r122) • 
When (cx11, cq2) ~ f~2 the question of whether system (1.1), (3.15), (1.5) can be stabilized remains 

open. But ife -allh ~- oq2 # 0 for tx u />  0, an integral controller exists (see (2.2)) which solves the stabili- 
zation problem. Below we propose a simple way of constructing such a controller which does not 
require the eigenvectors of the system to be determined (unlike the existing Krasovskii-g)sipov method 
[1, 21). 

Thus, we will consider system (3.15), (3.16) 
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%z I *cr/'*cntgh~ ¢clz ~ 

..~hg 
- f4  0 ~I¢ 

Fig. 3. Fig. 4. 

-cos~g 
0 

o, .,,._, % 

Fig. 5. Fig. 6. 

(3.22) 

and the linear integral feedback 

0 
u ( t )  = J dO.(s)y(t + s), t > 0 (3.23) 

-h  

or, in operator form 

0 
v (t) ffi J eP'dQ(s)y(t) ~.f[rl] (e -p), n2 (e-p)ly(t), t > 0 (3.24) 

- h  

By virtue of the Wiener-Paley theorem, taking the form of the controller (1.2) into account, it is 
sufficient to seek the functions rh and 112 in the class of linear combinations of polynomials of the first 
degree in e ~ and integral functions which are quadratically integrable along the imaginary axis. Then, 
reverting to the originals, we obtain a controller of the form (3.23) [15]. 

We shall require that, for the characteristic quasi-polynomial of system (3.22), closed by the controller 
(3.24), the following relation holds 
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q.o,,-°,2-.-. 1.2 - ~ t ( e - p )  P-'Q2 (e-x)  = +r~p+r  2, p ~ C  

where p2 4" rl p 4" r2 is an arbitrary stable polynomial (rt ~ R, r2 ~ R). As a result we have 

i~2(e - p )  = - - ( r  1 4 - O t l l ) +  
Cq; (r! +¢XU)+ r ~ + ~(e-P)(tx~? +e  -pa) 

Ct~ - p  

We will now choo,~e ~h(e ~)  so that the following equation is satisfied 

att(r; + a l ,  )+ r 2 +'ql (e -QIt )(oq2 + e  -aslh) = 0 

whence (0~12 4" e -axts ;e 0 by virtue of (2.2)) 

~i (e -~'~ ) = -a1:i -a. - rz = ~; 
(7"I 2 4- e -al Ih 

Assuming ~h(e ~)  --- B~ we obtain 

~2(e -~') = -(rt + otu) + %~q +°~l + r~ +'q~(cx~2 +e -ph ) 
oql - p 

I"}2 = e"a l  lh (Otl l ri + (X211 + r? ) 
(X12 '4" e -°it th 

= _(rl +{xlt) + n'2 +n~ e-ph 
¢q1 - P 

Reverting to the originals, we have 

rl~+n~e_ph r . ~ , , ,  _~-n2e , t ¢[O, hl~.fq2(t) 

cql-p " [ O, t>h 

0tll - P o 
h 0 

= J ~2(~)y2(t- x)d~ = J q2(-~t)y2(t+~t)d~t, 
0 -h 

1q2('~), '[ ~< maxlt, h} 

q2(x) = [0, X > maxlt, h} 

As a result we obtain the stabilizing controller in the form 

of t )  -Ctllri -0~2! - r2 y t ( t ) - ( r l  +otll)Y2(t)+ 0 • = J q2(-la)Y2(t+~t)dlJ. 
0~ 2 -4- e -¢q Ih -h 

Consider the follo~qng system [1] 

k(t) = I a 0 

4. E X A M P L E  

0 h b~ 

where a, d, bl and b2 are constant parameters and g is the control. We have 

a=~ 2, a~=t~t,3; b3=~+,ib2/2 

Two situations are ,3ossible: (1) bl = 0, (2) bl ~ 0. 
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Suppose bl ffi O. Then A ffi O, AI = O. Using the transformation 

I,°1 x = T y ,  T =  0 b 2 ' b2;eO 

and assuming that 

u(t) = [-a / b 2 ,0]y(t) + [-d / b 2,0]y(t- h) +u (t) 

we have 

whence a l l =  0, a~l - ~'/2. The point (0, ~/2) ~ f?. Hence (by Theorem 1) the system in this case cannot be stabilized. 
Suppose now that b3 = 0, bl ~ 0, a ,  0. Then (by Theorem 2) the system can be stabilized by the controller 

(1.5). The controller can be chosen so that 

u(t) ffi [-o~. 0,-a- Z0 ]y(t) + [0,t~ / 2 + t]a / 2]y(t - h) 

where a and ~ are arbitrary positive real numbers. 
When b I ;e O, b 3 ;e O, we use the transformation 

Assuming 

u(t) = [0,~ / 2]y(t- h)+v (t) 

we have 

whence al l  -- 0, a n  =/,4. 
The condition for stabilizability is abl + b 3 ;e 0. If this is satisfied, the stabilizing controller (1.5) can be constructed 

as follows. If a = 0, we have 

u(t)  ffi [-all52 - a213 ! , - a  I - a 2 ]y(t) + [-~1152,-~! - [32 + t~ / 2]y(t - h) 

(Oti,~i) E ~'~, i=1,2 

When a * 0 we choose the parameter g so that 

(a) g¢I2n-~-h, h ) ,  coshg<-ot l2 when b 4 < - I  

Co) ge  o, ~ , coshg<-al2  w h e n - l < b 4 < O  

(c ) ,g¢ /2n '~h ,h / ,  coshg>-¢zl2 when b4>0  

Then the required controller is sought in the form (3.19) (with rll and r22 replaced by r[l, r~2), where 

a ,  = -  gc°sh&. ~ l = a l l  + a l =  
sinhg at2 b 4 
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